NICD-mediated notch transduction regulates the different fate of chicken primordial germ cells and spermatogonial stem cells

2018 
Notch signaling is mainly regulated by Notch1 during development of chicken germ stem cells; however, the molecular mechanisms that contribute to generation of these germ stem cells have not been thoroughly investigated. In our studies, Overexpression of the Notch1 NICD promoted development of the reproductive ridge, but inhibited the formation of seminiferous tubules. The formation efficiency of PGCs in the reproductive ridge following overexpression of NICD (7.5% ± 0.11) was significantly higher than that (4.9% ± 0.17, p < 0.05) following inhibition of NICD, While the formation efficiency of spermatogonial stem cells (SSCs) in the testes (12.7% ± 0.08) was significantly lower after NICD overexpression than that after inhibition of NICD (16.3% ± 0.16, p < 0.05). Using co-immunoprecipitation, we found that this anomaly stemmed from the reversal of dissociation of the Notch-regulated transcription factor CBF-1/RBP co-suppression complex during the differentiation of PGCs into SSCs. This dissociation of the CBF-1/RBP co-suppressing complex during the differentiation of ESCs into PGCs resulted in the release of HDAC1 and HDAC2 and the recruitment of mastermind-like 1 to form a coactive complex to promote the expression of the downstream transcription suppressor hairy/enhancer of split-1. Dynamic expression of transducin-like enhancer of split 3, TLE4, and C-terminal binding protein 2 during further differentiation of PGCs inhibited the dissociation of the CBF-1/RBP co-suppression complex and inhibited the expression of the downstream genes. In summary, Notch signaling plays diametrically opposing roles during normal development of chicken PGCs and SSCs, and these functions was determined by the expression of NICD, changes in the CBF-1/RBP complex composition, and histone modification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    10
    Citations
    NaN
    KQI
    []