Resistance of primary breast cancer cells with enhanced pluripotency and stem cell activity to sex hormonal stimulation and suppression

2018 
Abstract Female sex steroid hormones have a fundamental role in breast cancer. Meanwhile, current evidence supports the contribution of breast cancer stem cells in carcinogenesis, metastasis, and resistance to cytotoxic chemotherapy. Nevertheless, the interaction between breast cancer stem cells with sex hormones or key hormonal antagonists remains elusive. Objective To investigate the effect of diverse sex hormonal stimulation and suppression regimens on the proliferation of a primary human breast cancer cells with stem cell activity. Methods Cells were exposed to estradiol, progesterone, letrozole, ulipristal acetate, or a combination of ulipristal acetate-letrozole, continually for 6 months. Additionally, nanoparticle-linked letrozole and ulipristal acetate formulations were included in a subsequent short-term exposure study. Phenotypic, pathologic, and functional characteristics of unexposed cells were investigated. Results The proliferation of breast cancer cells was comparable among all hormonal stimulation and suppression groups ( P =  0.8). In addition, the nanoparticle encapsulated hormonal antagonists were not able to overcome the observed resistance of cells. Cell characterization showed a mesenchymal-like phenotype overexpressing three master pluripotency markers (Oct 4, SOX2, and Nanog), and 92% of cells were expressing ALDH1A1. Notably, the CD44 high /CD24 low cell population presented only 0.97%–5.4% over repeat analyses. Most cells lacked the expression of mesenchymal markers; however, they showed differentiation into osteogenic and adipogenic lineages. Upon transfer to serum-free culture, the long-term maintained mesenchymal-like cancer cells showed remarkable morphologic plasticity as they switched promptly into an epithelial-like phenotype with significant mammosphere formation capacity ( P =  0.008). Conclusion Breast cancer cells can develop a pluripotent program with enhanced stemness activity that may together contribute to universal resistance to sex hormonal stimulation or deprivation. Isolation and characterization of patient-derived breast cancer stem cells in large clinical studies is therefore crucial to identify new targets for endocrine therapies, potentially directed towards stemness and pluripotency markers. Such direction may help overcoming endocrine resistance and draw attention to breast cancer stem cells’ behaviour under endogenous and exogenous sex hormones throughout a woman’s reproductive life.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    3
    Citations
    NaN
    KQI
    []