Impact of DC bias on Weak Optical-Field-Driven Electron Emission in Nano-Vacuum-Gap Detectors

2020 
In this work, we investigate multiphoton and optical-field tunneling emission from metallic surfaces with nanoscale vacuum gaps. Using time-dependent Schrodinger equation (TDSE) simulations, we find that the properties of the emitted photocurrent in such systems can be greatly altered by the application of only a few-volt DC bias. We find that when coupled with expected plasmonic enhancements within the nanometer-scale metallic gaps, the application of this DC bias significantly reduces the threshold for the transition to optical-field-driven tunneling from the metal surface, and could sufficiently enhance the emitted photocurrents, to make it feasible to electronically tag fJ ultrafast pulses at room temperature. Given the petahertz-scale instantaneous response of the photocurrents, and the low effective capacitance of thin-film nanoantenna devices that enables < 1 fs response time, detectors that exploit this bias-enhanced surface emission from nanoscale vacuum gaps could prove to be useful for communication, petahertz electronics, and ultrafast optical-field-resolved metrology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    6
    Citations
    NaN
    KQI
    []