Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study

2015 
Because of the advantages of tunability via size, shape, doping, and relatively low level of loss and high extent of spatial confinement, graphene quantum dots (GQDs) are emerging as an effective way to control light by molecular engineering. The collective excitation in GQDs shows high energy plasmon frequency along with frequencies in the terahertz (THz) region, making these systems powerful materials for photonic technologies. Here, we report a systematic study of the linear and nonlinear optical properties of large varieties of GQDs (∼400 systems) in size and topology utilizing the strengths of both semiempirical and first-principles methods. Our detailed study shows how the spectral shift and trends in the optical nonlinearity of GQDs depend on their structure, size, and shape. Among the circular, triangular, stripe, and random shaped GQDs, we find that GQDs with inequivalent sublattice atoms always possess lower HOMO–LUMO gap, broadband absorption, and high nonlinear optical coefficients. Also, we f...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    26
    Citations
    NaN
    KQI
    []