Ionization of N 2 in collisions with fast electrons: Evidence of an interference effect

2016 
Absolute double differential cross sections (DDCS) of electron emission were measured for ionization of ${\mathrm{N}}_{2}$ by fast electrons with energy 7 keV. Measurements were performed for different electron emission angles and energies. Evidence of oscillation due to Young-type interference was observed in the DDCS ratios for all angles. The frequency for large backward angle is found to be larger compared to that for small forward angle. Consequently, the forward-backward asymmetry parameter reveals the oscillatory structure even more clearly. The oscillations observed for both experimental-to-theoretical DDCS ratios and forward-backward asymmetry were well explained by the Cohen-Fano model of interference in a molecular double slit. A periodic deviation of the Cohen-Fano model from the asymmetry parameter data reveals the presence of a higher-frequency component. The first Born model was employed to explain the results of molecular nitrogen for which a complete-neglect-of-differential-overlap approximation was used along with an effective atomic number.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []