Electron ionization (EI, formerly known as electron impact ionization and electron bombardment ionization) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard (high fragmentation) ionization method, since it uses highly energetic electrons to produce ions. This leads to extensive fragmentation, which can be helpful for structure determination of unknown compounds. EI is the most useful for organic compounds which have a molecular weight below 600. Also, several other thermally stable and volatile compounds in solid, liquid and gas states can be detected with the use of this technique when coupled with various separation methods. Electron ionization was first described in 1918 by Canadian-American Physicist Arthur J. Dempster in the article of 'A new method of positive ray analysis.' It was the first modern mass spectrometer and used positive rays to determine the ratio of the mass to charge of various constituents. In this method, the ion source used an electron beam directed at a solid surface. The anode was made cylindrical in shape using the metal which was to be studied. Subsequently, it was heated by a concentric coil and then was bombarded with electrons. Using this method, the two isotopes of lithium and three isotopes of magnesium, with their atomic weights and relative proportions, were able to be determined. Since then this technique has been used with further modifications and developments. The use of a focused monoenergetic beam of electrons for ionization of gas phase atoms and molecules was developed by Bleakney in 1929. In this process, an electron from the analyte molecule (M) is expelled during the collision process to convert the molecule to a positive ion with an odd number of electrons. The following gas phase reaction describes the electron ionization process where M is the analyte molecule being ionized, e− is the electron and M+• is the resulting molecular ion. In an EI ion source, electrons are produced through thermionic emission by heating a wire filament that has electric current running through it. The kinetic energy of the bombarding electrons should have higher energy than the ionization energy of the sample molecule. The electrons are accelerated to 70 eV in the region between the filament and the entrance to the ion source block. The sample under investigation which contains the neutral molecules is introduced to the ion source in a perpendicular orientation to the electron beam. Close passage of highly energetic electrons in low pressure (ca. 10−5 to 10−6 torr) causes large fluctuations in the electric field around the neutral molecules and induces ionization and fragmentation. The fragmentation in electron ionization can be described using Born Oppenheimer potential curves as in the diagram. The red arrow shows the electron impact energy which is enough to remove an electron from the analyte and form a molecular ion from non- dissociative results. Due to the higher energy supplied by 70 eV electrons other than the molecular ion, several other bond dissociation reactions can be seen as dissociative results, shown by the blue arrow in the diagram. These ions are known as second-generation product ions. The radical cation products are then directed towards the mass analyzer by a repeller electrode. The ionization process often follows predictable cleavage reactions that give rise to fragment ions which, following detection and signal processing, convey structural information about the analyte. Increasing the electron ionization process is done by increasing the ionization efficiency. In order to achieve higher ionization efficiency there should be an optimized filament current, emission current, and ionizing current. The current supplied to the filament to heat it to incandescent is called the filament current. The emission current is the current measured between the filament and the electron entry slit. The ionizing current is the rate of electron arrival at the trap. It is a direct measure of the number of electrons in the chamber that are available for ionization. The sample ion current (I+) is the measure of the ionization rate. This can be enhanced by manipulation of the ion extraction efficiency (β), the total ionizing cross section (Qi), the effective ionizing path length (L), the concentration of the sample molecules() and the ionizing current (Ie). The equation can be shown as follows: The Ion extraction efficiency (β) can be optimized by increasing the voltage of both repeller and acceleration. Since the ionization cross section depends on the chemical nature of the sample and the energy of ionizing electrons a standard value of 70 eV is used. At low energies (around 20 eV), the interactions between the electrons and the analyte molecules do not transfer enough energy to cause ionization. At around 70 eV, the de Broglie wavelength of the electrons matches the length of typical bonds in organic molecules (about 0.14 nm) and energy transfer to organic analyte molecules is maximized, leading to the strongest possible ionization and fragmentation. Under these conditions, about 1 in 1000 analyte molecules in the source are ionized. At higher energies, the de Broglie wavelength of the electrons becomes smaller than the bond lengths in typical analytes; the molecules then become 'transparent' to the electrons and ionization efficiency decreases. The effective ionizing path length (L) can be increased by using a weak magnetic field. But the most practical way to increase the sample current is to operate the ion source at higher ionizing current (Ie).