Thermal stability of Mo/Si multilayers with boron carbide interlayers

2003 
Abstract Mo/Si multilayer systems with boron carbide (B 4 C) diffusion barrier layers were deposited on sapphire and silicon substrates by DC magnetron sputtering. Samples were subsequently annealed in vacuum at temperatures between 100 and 800 °C for duration of between 20 min and 30 h. Thermally stimulated solid state reactions have been characterized by X-ray analysis methods. Mo/Si multilayers without barrier layers are stable up to 100 °C. Interdiffusion was observed to start by 150 °C. It was found that B 4 C diffusion barrier layers with thicknesses between 0.3 and 1.0 nm, depending on the stack sequence, give rise to an increase of the thermal stability up to 400 °C. The impact of thermal treatments, at various temperatures and annealing times, on thickness and composition of the interdiffusion layers was investigated by X-ray reflectometry, wide angle X-ray scattering, cross-sectional high resolution transmission electron microscopy and fluorescence extended X-ray absorption fine structure measurements in combination with excitation of X-ray standing waves. The last method was used to investigate the short-range order of Mo/Si multilayers depth-resolved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    48
    Citations
    NaN
    KQI
    []