Effect of the Pauli principle on photoelectron spin transport in p+ GaAs

2015 
In p + GaAs thin films, under excitation by a tightly-focused laser, the spatial profile of the spin polarization is monitored as a function of excitation power. It is found that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle which causes a concentration dependence of the spin stiffness. Thermoelectric currents are also predicted to depend on spin under degeneracy (spin Soret currents), but these currents play a relatively small role in this case. The spin dependence of the mobility is also found weak. Conversely, ambipolar coupling with holes increases the steady-state photo-electron density at the place of excitation and therefore the amplitude of the degeneracy-induced polarization decrease at the place of excitation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []