language-icon Old Web
English
Sign In

Spin Hall effect

The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a cylindrical wire, the current-induced surface spins will wind around the wire. When the current direction is reversed, the directions of spin orientation is also reversed. The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a cylindrical wire, the current-induced surface spins will wind around the wire. When the current direction is reversed, the directions of spin orientation is also reversed. The spin Hall effect is a transport phenomenon consisting of the appearance of spin accumulation on the lateral surfaces of a sample carrying electric current. The opposing surface boundaries will have spins of opposite sign. It is analogous to the classical Hall effect, where charges of opposite sign appear on the opposing lateral surfaces in an electric-current carrying sample in a magnetic field. In the case of the classical Hall effect the charge build up at the boundaries is in compensation for the Lorentz force acting on the charge carriers in the sample due to the magnetic field. No magnetic field is needed for the SHE which is a purely spin-based phenomenon. The SHE belongs to the same family as the anomalous Hall effect, known for a long time in ferromagnets, which also originates from spin-orbit interaction. The spin Hall effect (direct and inverse) was predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. They have also introduced for the first time the notion of spin current. In 1983 Averkiev and Dyakonov have proposed a way to measure the inverse SHE under optical spin orientation in semiconductors. The first experimental demonstration of the inverse SHE, based on this idea, has been done by Bakun et al. in 1984 The term 'spin Hall effect' was introduced by Hirsch who re-predicted this effect in 1999. Experimentally, the (direct) spin Hall effect was observed in semiconductors more than 30 years after the original prediction. Two possible mechanisms give origin to the spin Hall effect, in which an electric current (composed of moving charges) transforms into a spin current (a current of moving spins without charge flow). The original (extrinsic) mechanism devised by Dyakonov and Perel consisted of spin-dependent Mott scattering, where carriers with opposite spin diffuse in opposite directions when colliding with impurities in the material. The second mechanism is due to intrinsic properties of the material, where the carrier's trajectories are distorted due to spin–orbit interaction as a consequence of the asymmetries in the material. One can intuitively picture the intrinsic effect by using the classical analogy between an electron and a spinning tennis ball. The tennis ball deviates from its straight path in air in a direction depending on the sense of rotation, also known as the Magnus effect. In a solid, the air is replaced by an effective electric field due to asymmetries in the material, the relative motion between the magnetic moment (associated to the spin) and the electric field creates a coupling that distorts the motion of the electrons.

[ "Spin polarization", "Spin pumping", "Spinplasmonics", "Spin transistor", "Magnonics", "Doublet state" ]
Parent Topic
Child Topic
    No Parent Topic