Evidence against a role for NLRP3-driven islet inflammation in db/db mice

2018 
Abstract Objectives Type 2 diabetes (T2D) is associated with chronic, low grade inflammation. Activation of the NLRP3 inflammasome and secretion of its target interleukin-1β (IL-1β) have been implicated in pancreatic β cell failure in T2D. Specific targeting of the NLRP3 inflammasome to prevent pancreatic β cell death could allow for selective T2D treatment without compromising all IL-1β-associated immune responses. We hypothesized that treating a mouse model of T2D with MCC950, a compound that specifically inhibits NLRP3, would prevent pancreatic β cell death, thereby preventing the onset of T2D. Methods Diabetic db/db mice were treated with MCC950 via drinking water for 8 weeks from 6 to 14 weeks of age, a period over which they developed pancreatic β cell failure. We assessed metabolic parameters such as body composition, glucose tolerance, or insulin secretion over the course of the intervention. Results MCC950 was a potent inhibitor of NLRP3-induced IL-1β in vitro and was detected at high levels in the plasma of treated db/db mice. Treatment of pre-diabetic db/db mice with MCC950, however, did not prevent pancreatic dysfunction and full onset of the T2D pathology. When examining the NLRP3 pathway in the pancreas of db/db mice, we could not detect an activation of this pathway nor increased levels of its target IL-1β. Conclusions NLRP3 driven-pancreatic IL-1β inflammation does not play a key role in the pathogenesis of the db/db murine model of T2D.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    25
    Citations
    NaN
    KQI
    []