Strong coupling between magnetic resonance and propagating surface plasmons at visible light frequencies

2020 
Light-matter interactions in nanostructures have shown great potential in physics, chemistry, surface science, materials science, and nanophotonics. Herein, for the first time, the feasibility of strong coupling between plasmon-induced magnetic resonant and propagating surface plasmonic modes at visible light frequencies is theoretically demonstrated. Taking advantage of the strong coupling between these modes allowed for a narrow-linewidth hybrid mode with a huge electromagnetic field enhancement to be acquired. This work can serve as a promising guide for designing a platform with strong coupling based on magnetic resonance at visible and even ultraviolet light frequencies and also offers an avenue for further exploration of strong light-matter interactions at the nanoscale.Light-matter interactions in nanostructures have shown great potential in physics, chemistry, surface science, materials science, and nanophotonics. Herein, for the first time, the feasibility of strong coupling between plasmon-induced magnetic resonant and propagating surface plasmonic modes at visible light frequencies is theoretically demonstrated. Taking advantage of the strong coupling between these modes allowed for a narrow-linewidth hybrid mode with a huge electromagnetic field enhancement to be acquired. This work can serve as a promising guide for designing a platform with strong coupling based on magnetic resonance at visible and even ultraviolet light frequencies and also offers an avenue for further exploration of strong light-matter interactions at the nanoscale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    4
    Citations
    NaN
    KQI
    []