Glycoprotein VI/Fc receptor γ chain-independent tyrosine phosphorylation and activation of murine platelets by collagen
2004
We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRγ (Fc receptor γ) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRγ chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP-76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cγ2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (∼10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRγ chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti-(α2 integrin) antibodies Ha1/29 and HMα2, but not by blockade of αIIbβ3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI–FcRγ chain complex, and is facilitated by binding of collagen to integrin α2β1.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
7
Citations
NaN
KQI