language-icon Old Web
English
Sign In

Collagen receptor

Collagen receptors are membrane proteins that bind the extracellular matrix protein collagen, the most abundant protein in mammals. They control mainly cell proliferation, migration and adhesion, coagulation cascade activation and they affect ECM structure by regulation of MMP (matrix metalloproteinases). Collagen receptors are membrane proteins that bind the extracellular matrix protein collagen, the most abundant protein in mammals. They control mainly cell proliferation, migration and adhesion, coagulation cascade activation and they affect ECM structure by regulation of MMP (matrix metalloproteinases). There are at least eight human collagen receptors belonging to four different classes. Integrins function as the major cell receptor for extracellular matrix protein. These an receptors comprise an α and β transmembrane subunit, which are noncovalently bound. Collagen binding is primarily provided by integrins α1β1, α2β1, α10β1 and α11β1. Integrin α1β1 binds to collagen via the MIDAS motif in the α subunit I domain. It preferentially binds collagens IV, VI and type XIII collagen, but also fibril-forming collagens. Specific binding sites in collagen I and IV have been identified. This receptor is situated mainly on mesenchymal cells. Functions include: fibroblast proliferation; regulation of collagen synthesis and MMP expression; response to renal injury. Integrin α2β1 preferentially binds fibril-forming collagens. Specific binding sites in collagen I and III have been identified. Integrin α2β1 is expressed mainly on epithelial cells and platelets. Functions include: platelet adhesion - the most abundant receptor for collagen in platelets; branching morphogenesis; mast cell activation; keratinocyte adhesion and it is the main regulator of cell migration. Integrin α10β1 preferentially binds collagens IV and VI, but also collagen II. It is expressed on chondrocytes and cardiac muscle. Involved in growth plate morphogenesis and function. Integrin α11β1 is expressed by mesenchymal cells in some parts of embryo during its development and also in muscles in adults: it preferably binds fibrillar collagen. Integrin receptors capable of collagen binding could, according to results of (Garnotel R et al. 2000), include integrin α10β2, which is situated on monocytes and binds type I collagen. Discoidin domain receptors form a subgroup of receptor tyrosine kinases. Receptor activation happens when collagen binds into preformed DDR dimers on cell membrane, when collagen is bound, a conformational change probably occurs, which causes cytosolic kinases to rotate to face each other, and their autophospohorylation. The exact way of receptor activation is unknown so far. Unlike other tyrosine-kinase receptors, maximal activation of receptors occurs 18 hours after collagen stimulation. They function as receptors for different collagen types, they recognize many fibrillar collagens and they are capable of binding some nonfibrillar collagens as well. Nevertheless, the native conformation of collagen is a requirement for receptor binding, denatured collagen is not bound. DDRs are expressed widely already during development and level of expression is high in adults as well. DDR1 is a homodimer. It's ectodomain consists of a collagen-binding discoidin domain followed by ~200 residues of unknown structure. It binds fibril-forming collagens and primarily type IV collagen, but also collagen of types I, VI, VIII. It is expressed mainly in epithelial cells and leukocytes and expression rate changes due to cell cycle phase.Functions include: mammary gland development; arterial wound repair; regulation of cell proliferation, cell adhesion and MMP expression; kidney function, differentiation and function of leukocytes.

[ "Cell adhesion", "Integrin alpha M", "Extracellular matrix", "Integrin", "Convulxin", "CD49c", "Platelet Collagen Receptor", "DDR1", "α2 integrin" ]
Parent Topic
Child Topic
    No Parent Topic