Investigation of Eolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran
2021
Dust and atmospheric particles have been described in southwestern Iran primarily in terms of load, concentration and transport. The passive deposition, however, has been discussed inadequately. Therefore, the relationships between different climate zones in southwestern Iran and dust deposition rates were quantified between 2014 and 2017 using both space- (second modern-era retrospective analysis for research and applications, version 2 reanalysis model) and ground-based (eolian ground deposition rate) tools. In addition, the surface meteorological records, including the wind patterns favoring the occurrence of dust events, were examined. A hot desert climate (BWh), hot semi-arid climate (BSh), and temperate hot and dry summer climate (Csa) were identified as the three dominant climate regions in the study area, exhibiting the highest average dust deposition rates. In this study, correlations between the most relevant climate patterns and deposition rate weather parameters were found to describe a region’s deposition rate when a dust event occurred. Based on these results, the BSh and Csa regions were found to be associated with the seasonal cycle of dust events in March, April, and May, revealing that in the long run meteorological conditions were responsible for the varying dust deposition rates. Relatively, precipitation and temperature were the two major factors influencing dust deposition rates, not wind speed. Moreover, the peak seasonal deposition rates in the spring and summer were 8.40 t km−2 month−1, 6.06 t km−2 month−1, and 3.30 t km−2 month−1 for the BWh, BSh, and Csa climate regions, respectively. However, each of these climate types was directly related to the specific quantity of the dust deposition rates. Overall, the highest dust deposition rates were detected over the years studied were 100.80 t km−2 year−1, 79.27 t km−2 year−1, and 39.60 t km−2 year−1 for BWh, BSh, and Csa, respectively.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
82
References
2
Citations
NaN
KQI