Aeolian processes, also spelled eolian or æolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth (or other planets). Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts.Cross-bedding of sandstone near Mount Carmel road, Zion National Park, indicating wind action and sand dune formation prior to formation of rock (NPS photo by George A. Grant, 1929)Mesquite Flat Dunes in Death Valley looking toward the Cottonwood Mountains from the north west arm of Star Dune (2003)Holocene eolianite deposit on Long Island, The Bahamas. This unit is formed of wind-blown carbonate grains. (2007) Aeolian processes, also spelled eolian or æolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth (or other planets). Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts. The term is derived from the name of the Greek god Aeolus, the keeper of the winds. Wind erodes the Earth's surface by deflation (the removal of loose, fine-grained particles by the turbulent action of the wind) and by abrasion (the wearing down of surfaces by the grinding action and sandblasting by windborne particles). Regions which experience intense and sustained erosion are called deflation zones. Most aeolian deflation zones are composed of desert pavement, a sheet-like surface of rock fragments that remains after wind and water have removed the fine particles. Almost half of Earth's desert surfaces are stony deflation zones. The rock mantle in desert pavements protects the underlying material from deflation. A dark, shiny stain, called desert varnish or rock varnish, is often found on the surfaces of some desert rocks that have been exposed at the surface for a long period of time. Manganese, iron oxides, hydroxides, and clay minerals form most varnishes and provide the shine. Deflation basins, called blowouts, are hollows formed by the removal of particles by wind. Blowouts are generally small, but may be up to several kilometers in diameter. Wind-driven grains abrade landforms. In parts of Antarctica wind-blown snowflakes that are technically sediments have also caused abrasion of exposed rocks. Grinding by particles carried in the wind creates grooves or small depressions. Ventifacts are rocks which have been cut, and sometimes polished, by the abrasive action of wind. Sculpted landforms, called yardangs, are up to tens of meters high and kilometers long and are forms that have been streamlined by desert winds. The famous Great Sphinx of Giza in Egypt may be a modified yardang.