Mapping the influence of the gut microbiota on small molecules in the brain through mass spectrometry imaging

2020 
Background: The gut microbiota is known to influence virtually all facets of human health. Recent work has highlighted a potential role for the gut microbiota in neurological health through the microbiome-gut-brain axis. Microbes can influence the brain both directly and indirectly; through neurotransmitter production, induction of host immunomodulators, or through the release or induction of other microbial or host molecules. Methods: Here we used mass spectrometry imaging (MSI), a label-free imaging tool, to map the molecular changes that occur in the murine gut and brain in germ-free, antibiotic-treated and control mice. Results: We determined the spatial distribution and relative quantification of neurotransmitters and their precursors across brain and gut sections in response to the microbiome. Using untargeted MSI of small molecules, we detected a significant change in the levels of four identified metabolites in the brains of germ-free animals compared to controls; vitamin B5, 3-hydroxy-3-methylglutaric acid, 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate. However, antibiotic treatment induced no significant changes in these metabolites in the brain after one week of treatment. Conclusions: This work exemplifies the utility of MSI as a tool in determining the spatial distribution and quantification of bacterial and host metabolites in the gut and brain whilst also offering the potential for discovery of novel mediators of microbiome-gut-brain axis communication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []