language-icon Old Web
English
Sign In

Mass spectrometry imaging

Mass spectrometry imaging (MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned. By choosing a peak in the resulting spectra that corresponds to the compound of interest, the MS data is used to map its distribution across the sample. This results in pictures of the spatially resolved distribution of a compound pixel by pixel. Each data set contains a veritable gallery of pictures because any peak in each spectrum can be spatially mapped. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte. Therefore, quantification is possible, when its challenges are overcome. Although widely used traditional methodologies like radiochemistry and immunohistochemistry achieve the same goal as MSI, they are limited in their abilities to analyze multiple samples at once, and can prove to be lacking if researchers do not have prior knowledge of the samples being studied. Most common ionization technologies in the field of MSI are DESI imaging, MALDI imaging and secondary ion mass spectrometry imaging (SIMS imaging).Raman scatteringforce microscopy (AFM) Mass spectrometry imaging (MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned. By choosing a peak in the resulting spectra that corresponds to the compound of interest, the MS data is used to map its distribution across the sample. This results in pictures of the spatially resolved distribution of a compound pixel by pixel. Each data set contains a veritable gallery of pictures because any peak in each spectrum can be spatially mapped. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte. Therefore, quantification is possible, when its challenges are overcome. Although widely used traditional methodologies like radiochemistry and immunohistochemistry achieve the same goal as MSI, they are limited in their abilities to analyze multiple samples at once, and can prove to be lacking if researchers do not have prior knowledge of the samples being studied. Most common ionization technologies in the field of MSI are DESI imaging, MALDI imaging and secondary ion mass spectrometry imaging (SIMS imaging). More than 50 years ago, IMS was introduced using secondary ion mass spectrometry (SIMS) to study semiconductor surfaces by Castaing and Slodzian. However, it was the pioneering work of Richard Caprioli and colleagues in the late 1990s, demonstrating how matrix-assisted laser desorption/ionization (MALDI) could be applied to visualize large biomolecules (as proteins and lipids) in cells and tissue to reveal the function of these molecules and how function is changed by diseases like cancer, which led to the widespread use of IMS. Nowadays, different ionization techniques have been used, including SIMS, MALDI and desorption electrospray ionization (DESI), as well as other technologies. Still, MALDI is the current dominant technology with regard to clinical and biological applications of MSI. The MSI is based on the spatial distribution of the sample. Therefore, the operation principle depends on the technique that is used to obtain the spatial information. The two techniques used in MSI are: microprobe and microscope. This technique is performed using a focused ionization beam to analyze a specific region of the sample by generating a mass spectrum. The mass spectrum is stored along with the spatial coordination where the measurement took place. Then, a new region is selected and analyzed by moving the sample or the ionization beam. These steps are repeated until the entire sample has been scanned. By coupling all individual mass spectra, a distribution map of intensities as a function of x and y locations can be plotted. As a result reconstructed molecular images of the sample are obtained. In this technique, a 2D position-sensitive detector is used to measure the spatial origin of the ions generated at the sample surface by the ion optics of the instruments. The resolution of the spatial information will depend on the magnification of the microscope, the quality of the ions optics and the sensitivity of the detector. A new region still needs to be scanned, but the number of positions drastically reduces. The limitation of this mode is the finite depth of vision present with all microscopes. The ionization techniques available for IMS are suited to different applications. Some of the criteria for choosing the ionization method are the sample preparation requirement and the parameters of the measurement, as resolution, mass range and sensitivity. Based on that, the most common used ionization method are MALDI, SIMS AND DESI which are described below. Still, other minor techniques used are laser ablation electrospray ionization (LAESI) and laser-ablation-inductively coupled plasma (LA-ICP). Secondary ion mass spectrometry (SIMS) is used to analyze solid surfaces and thin films by sputtering the surface with a focused primary ion beam and collecting and analyzing ejected secondary ions. There are many different sources for a primary ion beam. However, the primary ion beam must contain ions that are at the higher end of the energy scale. Some common sources are: Cs+, O2+, O, Ar+ and Ga+. SIMS imaging is performed in a manner similar to electron microscopy; the primary ion beam is emitted across the sample while secondary mass spectra are recorded. SIMS proves to be advantageous in providing the highest image resolution but only over small area of samples. More, this technique is widely regarded as one of the most sensitive forms of mass spectrometry as it can detect elements as small as 10−6-10−9. Multiplexed ion beam imaging (MIBI) is a SIMS method that uses metal isotope labeled antibodies to label compounds in biological samples. Developments within SIMS: Some chemical modifications have been made within SIMS to increase the efficiency of the process. There are currently two separate techniques being used to help increase the overall efficiency by increasing the sensitivity of SIMS measurements: matrix-enhanced SIMS (ME-SIMS) - This has the same sample preparation as MALDI does as this simulates the chemical ionization properties of MALDI. ME-SIMS does not sample nearly as much material. However, if the analyte being tested has a low mass value then it can produce a similar looking spectra to that of a MALDI spectra. ME-SIMS has been so effective that it has been able to detect low mass chemicals at sub cellular levels that was not possible prior to the development of the ME-SIMS technique. The second technique being used is called sample metallization (Meta-SIMS) - This is the process of gold or silver addition to the sample. This forms a layer of gold or silver around the sample and it is normally no more than 1-3 nm thick. Using this technique has resulted in an increase of sensitivity for larger mass samples. The addition of the metallic layer also allows for the conversion of insulating samples to conducting samples, thus charge compensation within SIMS experiments is no longer required.

[ "Mass spectrometry", "Desorption", "Ionization", "Laser ablation electrospray ionization", "Ion-mobility spectrometry–mass spectrometry", "maldi msi" ]
Parent Topic
Child Topic
    No Parent Topic