The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain)

2006 
Abstract A translocation experiment of red swamp crayfish ( Procambarus clarkii ) to different sites located in the River Guadiamar was performed in order to assess the ability of this species as bioindicator of heavy metal and metalloid contamination. Crayfish were placed in cages and exposed to polluted environment during either 6 or 12 days in the three sites with different concentration of contaminants. Their tissues (exoskeleton + gills, hepatopancreas and abdominal muscle) were dissected and analysed by ICP–MS to assess for concentration of Cd, Cu, Zn, Pb and As. Both exposure times result in significant bioaccumulation of some metals in crayfish tissues as compared to their concentration in the environment. According to overall metal concentration, crayfish tissues rank as follows: hepatopancreas/viscera > exoskeleton/gills > abdominal muscle. Essential metals for crayfish metabolism (Cu and Zn) are always found in high concentrations independently of their quantities in the environment because of the ability of crayfish to manipulate their levels for their own metabolic profit. Metals not involved in crayfish metabolism (Cd, Pb, As) tend to increase with increasing concentration in the surrounding environment and with longer exposure times. Thus crayfish could be used as bioindicator of these pollutants because their dose- and time-dependent accumulation may be reflective of the levels of non-essential metals present in contaminated wetlands. Future guidelines in plans for monitoring contamination on polluted Mediterranean rivers and wetlands should take into account the implementation of the incubation of crayfish during 6 days and their subsequent analyses of metal contents, as a routine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    124
    Citations
    NaN
    KQI
    []