A bioindicator is any species (an indicator species) or group of species whose function, population, or status can reveal the qualitative status of the environment. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes (biochemical, physiological, or behavioural) that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot. A bioindicator is any species (an indicator species) or group of species whose function, population, or status can reveal the qualitative status of the environment. For example, copepods and other small water crustaceans that are present in many water bodies can be monitored for changes (biochemical, physiological, or behavioural) that may indicate a problem within their ecosystem. Bioindicators can tell us about the cumulative effects of different pollutants in the ecosystem and about how long a problem may have been present, which physical and chemical testing cannot. A biological monitor or biomonitor is an organism that provides quantitative information on the quality of the environment around it. Therefore, a good biomonitor will indicate the presence of the pollutant and also attempt to provide additional information about the amount and intensity of the exposure. A biological indicator is also the name given to a process for assessing the sterility of an environment through the use of resistant microorganism strains (eg. Bacillus or Geobacillus). Biological indicators can be described as the introduction of a highly resistant microorganisms to a given environment before sterilization, tests are conducted to measure the effectiveness of the sterilization processes. As biological indicators use highly resistant microorganisms, you can be assured that any sterilization process that renders them inactive will have also killed off more common, weaker pathogens. A bioindicator is an organism or biological response that reveals the presence of the pollutants by the occurrence of typical symptoms or measurable responses and is, therefore, more qualitative. These organisms (or communities of organisms) deliver information on alterations in the environment or the quantity of environmental pollutants by changing in one of the following ways: physiologically, chemically or behaviourally. The information can be deduced through the study of: The importance and relevance of biomonitors, rather than man-made equipment, is justified by the observation that the best indicator of the status of a species or system is itself. Bioindicators can reveal indirect biotic effects of pollutants when many physical or chemical measurements cannot. Through bioindicators, scientists need to observe only the single indicating species to check on the environment rather than monitor the whole community. The use of a biomonitor is described as biological monitoring and is the use of the properties of an organism to obtain information on certain aspects of the biosphere. Biomonitoring of air pollutants can be passive or active. Passive methods observe plants growing naturally within the area of interest. Active methods detect the presence of air pollutants by placing test plants of known response and genotype into the study area. Bioaccumulative indicators are frequently regarded as biomonitors. Depending on the organism selected and their use, there are several types of bio-indicators. The presence or absence of certain plant or other vegetative life in an ecosystem can provide important clues about the health of the environment: environmental preservation. There are several types of plant biomonitors, including mosses, lichens, tree bark, bark pockets, tree rings, and leaves. Fungi too may be useful as indicators. Lichens are organisms comprising both fungi and algae. They are found on rocks and tree trunks, and they respond to environmental changes in forests, including changes in forest structure – conservation biology, air quality, and climate. The disappearance of lichens in a forest may indicate environmental stresses, such as high levels of sulfur dioxide, sulfur-based pollutants, and nitrogen oxides.The composition and total biomass of algal species in aquatic systems serve as an important metric for organic water pollution and nutrient loading such as nitrogen and phosphorus.There are genetically engineered organisms that can respond to toxicity levels in the environment; e.g., a type of genetically engineered grass that grows a different colour if there are toxins in the soil.