Biological Activity of Peptide-conjugated Polyion Complex Matrices Consisting of Alginate and Chitosan.

2017 
: Peptide-conjugated polysaccharide matrices using bioactive laminin-derived peptides are useful biomaterials for tissue and cell engineering. Here, we demonstrate an easy handling preparation method for peptide-polysaccharide matrices using polyion complex with both alginate and chitosan. First, aldehyde-alginate was synthesized by oxidization of alginate using NaIO4 , and then, reacted with Cys-peptides. Next, the peptide-alginate solution was added to a chitosan-coated plate, and the peptide-polyion complex matrices (peptide-PCMs) were prepared. The peptide-PCMs using an integrin αvβ3-binding peptide (A99a: ALRGDN, mouse laminin α1 chain 1145-1150) and an integrin α2β1-binding peptide (EF1XmR: RLQLQEGRLHFXFD, X = Nle, mouse laminin α1 chain 2751-2763) showed strong cell attachment activity in a dose-dependent manner. When we examined the effect of various spacers on the biological activity of A99a-PCM, hydrophobic and long spacers enhanced the cell attachment activity. Further, the A99a-PCM with the spacers strongly promoted neurite outgrowth. The polyion complex method is an easy way to obtain insolubilized matrix and is widely applicable for various polysaccharides. The peptide-PCM is useful as a biomaterial for cell and tissue engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    5
    Citations
    NaN
    KQI
    []