The Dual-specificity Phosphatase DUSP14 Negatively Regulates Tumor Necrosis Factor- and Interleukin-1-induced Nuclear Factor-κB Activation by Dephosphorylating the Protein Kinase TAK1

2013 
The transcription factor NF-κB is critically involved in the inflammatory response triggered by the proinflammatory cytokines TNF and IL-1. Various studies have demonstrated that activation of TAK1 (TGF-β-activated kinase 1) is an essential step in TNF- and IL-1-induced NF-κB activation pathways. In this study, we identified a member of the dual-specificity phosphatase family, DUSP14, as a negative regulator of TNF- and IL-1-triggered NF-κB activation by expression screens. We found that DUSP14 interacted with TAK1 and that this interaction was enhanced by TNF or IL-1 stimulation. Overexpression of DUSP14 dephosphorylated TAK1 at Thr-187, a residue in the activation loop critically involved in TAK1 activation. Knockdown of DUSP14 increased basal as well as TNF- and IL-1-induced TAK1 phosphorylation at Thr-187. Overexpression of DUSP14, but not its phosphatase-deficient mutant, inhibited TNF- and IL-1-induced as well as TAK1-mediated NF-κB activation, whereas knockdown of DUSP14 had opposite effects. These findings suggest that DUSP14 negatively regulates TNF- or IL-1-induced NF-κB activation by dephosphorylating TAK1 at Thr-187. Our study reveals a new post-translational regulatory mechanism of NF-κB activation triggered by the proinflammatory cytokines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    41
    Citations
    NaN
    KQI
    []