Quantum-critical continuum in magic-angle twisted bilayer graphene
2021
The flat bands of magic-angle twisted bilayer graphene (MATBG) host strongly-correlated electronic phases such as correlated insulators, superconductors and a strange metal state. The latter state, believed to hold the key to a deeper understanding of the electronic properties of MATBG, is obscured by the abundance of phase transitions; so far, this state could not be unequivocally differentiated from a metal undergoing frequent electron-phonon collisions. We report on transport measurements in superconducting (SC) MATBG in which the correlated insulator states were suppressed by screening. The uninterrupted metallic ground state features a T-linear resistivity extending over three decades in temperature, from 40 mK to 20 K, spanning a broad range of dopings including those where a correlation-driven Fermi surface reconstruction occurs. This strange-metal behavior is distinguished by Planckian scattering rates and a linear magneto-resistivity $\rho \propto B$. To the contrary, near charge neutrality or a fully-filled flat band, as well as for devices twisted away from the magic angle, the archetypal Fermi liquid behavior is recovered. Our measurements demonstrate the existence of a quantum-critical phase whose fluctuations dominate the metallic ground state. Further, a transition to the strange metal is observed upon suppression of the SC order, which suggests an intimate relationship between quantum fluctuations and superconductivity in MATBG.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
5
References
2
Citations
NaN
KQI