Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film

2010 
We have numerically simulated the induced electric fields and the plasmonic interactions of a metallic nanotube near a thin metallic film. Our study shows that the energies and intensities of the plasmon resonances depend strongly on the aspect ratio (the ratio of the inner to outer radius) of the nanotube as well as the separation between the center of the nanotube and the upper surface of the metallic film and the thickness of the film. The enhancement of the induced electric field of this system reaches as high as 104 orders of magnitude and its field distribution is characterized by waveguide-mode resonance. The report proposes that these phenomena can be applied to designing surface enhanced spectroscopies such as surface enhanced Raman spectroscopy for efficient chemical and biological sensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    6
    Citations
    NaN
    KQI
    []