Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane.

1991 
In certain areas of the Everglades Agricultural Area, plant and ratoon sugarcane (Saccharum L.) yields are increased by application of Si from calcium silicate slag. The greatest yield responses are obtained in the plant crop the first year after application of slag and when plant uptake of Si is increased. Magnesium deficiencies have been reported after slag application. The objective of this study was to quantify interactions of soil and leaf nutrients on sugarcane grown on a Terra Ceia muck (Euic, hyperthermic Typic Medisaprist) that had previously received calcium silicate slag. Slag was applied at five rates, and yields were evaluated from plant, first-ratoon, and second-ratoon (stubble) crops at two locations. Soil and leaf from each crop were sampled for nutrient analysis and the results were used to interpret the yield data. Although slag increased cane yield by as much as 39% and sugar yield by 50%, for each 100 mg L−1 drop in extractable soil Mg, cane yields declined by 5.3 Mg ha−1 and sugar yields by 0.9 Mg ha−1. At leaf Si concentrations exceeding 10 g kg−1, optimum cane and sugar yields were observed, while leaf Mg concentrations approached critical leaf concentrations below 1.5 g kg−1. Estimates of total leaf nutrient uptake during each crop indicated that uptake of Mg did not meet nutrient demands at high biomass production. Nutrient antagonism between Si and Mg is suggested. Low soil Mg may contribute to the marked crop responses to slag and for the decline in stubble production. Application of a magnesium fertilizer may be necessary to maintain high nutrient availability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    42
    Citations
    NaN
    KQI
    []