language-icon Old Web
English
Sign In

Plant nutrition

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth, plant metabolism and their external supply. In 1972, Emanuel Epstein defined two criteria for an element to be essential for plant growth: Plant nutrition is the study of the chemical elements and compounds necessary for plant growth, plant metabolism and their external supply. In 1972, Emanuel Epstein defined two criteria for an element to be essential for plant growth: This is in accordance with Justus von Liebig's law of the minimum. The essential plant nutrients include carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil (exceptions include some parasitic or carnivorous plants). There are seventeen most important nutrients for plants. Plants must obtain the following mineral nutrients from their growing medium:- These elements stay beneath soil as salts, so plants consume these elements as ions. The macronutrients are consumed in larger quantities; hydrogen, oxygen, nitrogen and carbon contribute to over 95% of a plant's entire biomass on a dry matter weight basis. Micronutrients are present in plant tissue in quantities measured in parts per million, ranging from 0.1 to 200 ppm, or less than 0.02% dry weight. Most soil conditions across the world can provide plants adapted to that climate and soil with sufficient nutrition for a complete life cycle, without the addition of nutrients as fertilizer. However, if the soil is cropped it is necessary to artificially modify soil fertility through the addition of fertilizer to promote vigorous growth and increase or sustain yield. This is done because, even with adequate water and light, nutrient deficiency can limit growth and crop yield. Plants take up essential elements from the soil through their roots and from the air (mainly consisting of nitrogen and oxygen) through their leaves. Nutrient uptake in the soil is achieved by cation exchange, wherein root hairs pump hydrogen ions (H+) into the soil through proton pumps. These hydrogen ions displace cations attached to negatively charged soil particles so that the cations are available for uptake by the root. In the leaves, stomata open to take in carbon dioxide and expel oxygen. The carbon dioxide molecules are used as the carbon source in photosynthesis. The root, especially the root hair, is the essential organ for the uptake of nutrients. The structure and architecture of the root can alter the rate of nutrient uptake. Nutrient ions are transported to the center of the root, the stele, in order for the nutrients to reach the conducting tissues, xylem and phloem. The Casparian strip, a cell wall outside the stele but within the root, prevents passive flow of water and nutrients, helping to regulate the uptake of nutrients and water. Xylem moves water and mineral ions within the plant and phloem accounts for organic molecule transportation. Water potential plays a key role in a plant's nutrient uptake. If the water potential is more negative within the plant than the surrounding soils, the nutrients will move from the region of higher solute concentration—in the soil—to the area of lower solute concentration - in the plant.

[ "Crop", "Nutrient", "Nitrogen", "Monogastric", "Mineral excess", "Phalaris aquatica" ]
Parent Topic
Child Topic
    No Parent Topic