Mitochondrial reactive oxygen species and heme, non-heme iron metabolism.

2020 
Abstract Mitochondria are one of the most important organelles for eukaryotes, including humans, to produce energy. In the energy-producing process, mitochondria constantly generate reactive oxygen species as a by-product of electrons leaking out from the electron transport chain react with oxygen. The active oxygen, in turn, plays pivotal roles in mediating several signalings, including those that are implicated in the development of some diseases such as neurodegenerative disease, cardiovascular disease, and carcinogenesis. This signaling, derived from mitochondrial reactive oxygen species, also affects intracellular iron homeostasis by regulating the expression of transporters. Heme iron is incorporated into cells through HCP1, and non-heme iron is transported by DMT1 in absorptive cells. Intracellular iron is exported by ferroportin and bound with transferrin. In most types of cell including erythrocyte, transferrin-bound iron is incorporated through transferrin-transferrin receptor system. We previously reported that the expression of HCP1 and DMT1 was upregulated in cancer cells and that overexpression of manganese superoxide dismutase, which is a mitochondrial-specific superoxide dismutase, downregulated the expression. These findings indicate that mitochondrial reactive oxygen species is associated with iron-related oxidative reactions. Recently, a mitochondria-specific iron transporter, mitoferrin, was identified, and the relationships among mitochondria, iron transportation, and diseases have been increasingly clarified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    8
    Citations
    NaN
    KQI
    []