Eco-Friendly Fabrication of Plasmonically Active Substrates Based on End-Grafted Poly(ethylene glycol) Layers

2019 
We report completely sustainable processes and materials for inexpensive and scalable fabrication of plasmonically active solid substrates, which are critical for emerging applications in sensing, catalysis, and metasurfaces. Our approach involves grafting of poly(ethylene glycol) (PEG) onto silicon oxide terminated solid substrates using all-water based processing leading to an ultrathin (12 nm) and smooth (roughness of ∼1 nm) functional layer. The resulting surfaces facilitate robust and effective immobilization of gold nanoparticles (NPs) with a density that is superior to the organic solvent based processing. This new process achieves size dependent assembly of the citrate-stabilized gold NPs resulting in high plasmonic activity in surface-enhanced Raman scattering (SERS). The use of leaf extracts derived from Quercus pubescens as a reducing and stabilizing agent allowed for green synthesis of gold NPs with an average diameter of 25.6 ± 11.1 nm. The assembly of the green synthesized gold NPs on all-wa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    11
    Citations
    NaN
    KQI
    []