Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin

2018 
Current research effort aims at developing and designing new sensing platform architectures for effectively assaying biological targets that are significantly important for human healthcare and medical diagnosis. Here, we proposed a novel nanostructured sensor based on the combination of fluorinated graphene oxide and iron-based metal–organic gel (FGO@Fe–MOG). The unique properties including hierarchical porosity along with excellent electron transfer behavior make it an ideal candidate for electrochemical sensing of thrombin with superior detection limits compared to other (electrochemical, fluorescence, and colorimetric) strategies. Specifically, thrombin-binding aptamer was immobilized onto FGO@Fe–MOG through strong electrostatic interaction without any special modification or labeling, and the electrochemical impedance spectroscopy was used as the analyzing tool. The introduced aptasensor revealed high selectivity and reproducibility toward thrombin with the detection limit of 58 pM. The effectiveness...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    25
    Citations
    NaN
    KQI
    []