Silicon quantum dots-assisted synthesis of MoS2/rGO sandwich structures with excellent supercapacitive performance

2019 
Layered molybdenum disulfide (MoS2) has shown potential as an electrode material towards high-performance supercapacitors. Structure engineering of MoS2-based nanocomposites could further improve their electrochemical response. In this work, a unique architecture composed of 3D MoS2 nanoflowers sandwiched between 2D rGO nanosheets is obtained by a facile hydrothermal method with the assistance of silicon quantum dots (SiQDs). The resultant SiQDs-MoS2/rGO possesses large surface areas, abundant active sites and diversified pores. In addition, MoS2 component contains a high content of metallic 1T phase besides intrinsic semiconductive 2H phase, leading to increased electrical conductivity. This work reveals that the introduced SiQDs as an exogenous seed can regulate the crystal growth and morphological evolution of MoS2 in the presence of rGO. Consequently, the resulting SiQDs-MoS2/rGO electrode for supercapacitor exhibits a high specific capacitance (946.7 F g−1 at 0.5 A g−1), an impressive cycling stability (88.2% capacitance retention after 10,000 cycles), as well as an excellent energy density of 71.3 Wh kg−1 and a power density of 11.3 kW kg−1. The sandwich structure together with the synergistic effects of each active component contribute to the excellent electrochemical performance of SiQDs-MoS2/rGO. This work provides a simple yet effective approach for preparation of the high-performance MoS2-based electrodes for the supercapacitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    7
    Citations
    NaN
    KQI
    []