language-icon Old Web
English
Sign In

Molybdenum disulfide

hR9, R3m, No 160 (3R)Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS2. Molybdenum disulfide (or moly) is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS2. The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenite, the principal ore for molybdenum. MoS2 is relatively unreactive. It is unaffected by dilute acids and oxygen. In appearance and feel, molybdenum disulfide is similar to graphite. It is widely used as a dry lubricant because of its low friction and robustness. Bulk MoS2 is a diamagnetic, indirect bandgap semiconductor similar to silicon, with a bandgap of 1.23 eV. MoS2 is naturally found as either molybdenite, a crystalline mineral, or jordisite, a rare low temperature form of molybdenite. Molybdenite ore is processed by flotation to give relatively pure MoS2. The main contaminant is carbon. MoS2 also arises by thermal treatment of virtually all molybdenum compounds with hydrogen sulfide or elemental sulfur and can be produced by metathesis reactions from molybdenum pentachloride. All forms of MoS2 have a layered structure, in which a plane of molybdenum atoms is sandwiched by planes of sulfide ions. These three strata form a monolayer of MoS2. Bulk MoS2 consists of stacked monolayers, which are held together by weak van der Waals interactions. Crystalline MoS2 is found in nature as one of two phases, 2H-MoS2 and 3R-MoS2, where the 'H' and the 'R' indicate hexagonal and rhombohedral symmetry, respectively. In both of these structures, each molybdenum atom exists at the center of a trigonal prismatic coordination sphere and is covalently bonded to six sulfide ions. Each sulfur atom has pyramidal coordination and is bonded to three molybdenum atoms. Both the 2H- and 3R-phases are semiconducting. A third, metastable crystalline phase known as 1T-MoS2 was discovered by intercalating 2H-MoS2 with alkali metals. This phase has tetragonal symmetry and is metallic. The 1T-phase can be stabilized through doping with electron donors like rhenium, or converted back to the 2H-phase by microwave radiation. Nanotube-like and buckyball-like molecules composed of MoS2 are known. While bulk MoS2 in the 2H-phase is known to be an indirect-band gap semiconductor, monolayer MoS2 has a direct band gap. The layer-dependent optoelectronic properties of MoS2 have promoted much research in 2-dimensional MoS2-based devices. 2D MoS2 can be produced by exfoliating bulk crystals to produce single-layer to few-layer flakes either through a dry, micromechanical process or through solution processing. Micromechanical exfoliation, also pragmatically called 'Scotch-tape exfoliation', involves using an adhesive material to repeatedly peel apart a layered crystal by overcoming the van der Waals forces. The crystal flakes can then be transferred from the adhesive film to a substrate. This facile method was first used by Novoselov and Geim to obtain graphene from graphite crystals. However, it can not be employed for a uniform 1-D layers because of weaker adhesion of MoS2 to the substrate (either Si, glass or quartz). The aforementioned scheme is good for graphene only. While Scotch tape is generally used as the adhesive tape, PDMS stamps can also satisfactorily cleave MoS2 if it is important to avoid contaminating the flakes with residual adhesive.

[ "Chemical engineering", "Composite material", "Inorganic chemistry", "Metallurgy", "Molybdenum trisulfide" ]
Parent Topic
Child Topic
    No Parent Topic