miR‑217‑5p regulates myogenesis in skeletal muscle stem cells by targeting FGFR2

2020 
MicroRNA-217-5p (miR-217-5p) has been implicated in cell proliferation; however, its role in skeletal muscle stem cells (SkMSCs) remains unknown. The present study aimed to explore the roles of miR‑217‑5p in the biological characteristics of SkMSCs. SkMSCs were identified by cell surface markers using flow cytometry. The present study observed that miR‑217‑5p mimics accelerated the proliferation and suppressed the differentiation in SkMSCs. In addition, the results of the present study revealed that fibroblast growth factor receptor 2 (FGFR2) was a target of miR‑217‑5p, as miR‑217‑5p bound directly to the 3'‑untranslated region of FGFR2 mRNA, resulting in increased FGFR2 mRNA and protein levels. In addition, the present study suppressed the expression of FGFR2 in SkMSCs using a selective FGFR inhibitor AZD4547 and detected the efficiency of inhibition by reverse transcription‑quantitative PCR and western blotting. miR‑217‑5p levels were positively associated with FGFR2 expression, which was upregulated and accelerated the proliferation of SkMSCs compared with that of the miR‑NC group. Collectively, these results demonstrated that miR‑217‑5p may act as a myogenesis promoter in SkMSCs by directly targeting FGFR2 and may regulate the myogenesis of these cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    5
    Citations
    NaN
    KQI
    []