A geometrical optics model based on the non-Gaussian probability density distribution of sea surface slopes for wind speed retrieval at low incidence angles

2016 
In this study, a large amount of data from precipitation radar PR and National Data Buoy Center NDBC buoys are collocated for the development and validation of a Geometrical Optics Model, in order to retrieve wind speed at small incidence angles. The omni-directional model is developed based on the combination of the quasi-specular scattering theory and non-Gaussian probability density distribution of ocean surface slope, and can be applied at incidence angles as high as 15°. There are four parameters included in the proposed model: the effective Fresnel reflection coefficient, the mean square slope, and the two coefficients associated with the kurtosis of the sea surface slope distribution. Using one half of the collocated data, the dependence of the four parameters on the in situ wind speed is acquired. The results show that the effective Fresnel reflection coefficient has a decrease relative to that obtained in previous studies. We combine the proposed model with the maximum-likelihood estimation MLE technique to retrieve the ocean surface wind speed at the 10 m height. The retrieved wind speeds are then validated against those measured by the NDBC buoys. The comparison shows that the root mean square error RMSE and bias between the model retrievals and buoy observations are 1.54 m s–1 and 0.1 m s–1, respectively, revealing high agreements in the wind speed estimations. The results of this study indicate that the proposed model and the PR measurements at low incidence angles can provide reasonably accurate estimates of the surface wind speeds within the range of 0–20 m s–1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    6
    Citations
    NaN
    KQI
    []