Design and Calibration of a Fast Flying-Dot Projector for Dynamic Light Transport Acquisition

2020 
The light transport captures a scene's visual complexity. Acquiring light transport for dynamic scenes is difficult, since any change in viewpoint, materials, illumination or geometry also varies the transport. One strategy to capture dynamic light transport is to use a fast “flying-dot” projector; i.e., where an impulse light-probe is quickly scanned across the scene. We have built a novel fast flying-dot projector prototype using a high speed camera and a scanning MEMS (Micro-electro-mechanical system) mirror. Our contributions are calibration strategies that enable dynamic light transport acquisition at near video rates with such a system. We develop new methods for overcoming the effects of MEMS mirror resonance. We utilize new algorithms for denoising impulse scanning at high frame rates and compare the trade-offs in visual quality between frame rate and illumination power. Finally, we show the utility of our calibrated setup by demonstrating graphics applications such as video relighting, direct/global separation, and dual videography for dynamic scenes such as fog, water, and glass. Please see our accompanying video for dynamic scene results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    3
    Citations
    NaN
    KQI
    []