Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol

2016 
Herein we describe a combined experimental and computational study of electrochemical glycerol oxidation in acidic media on Pt(111) and Pt(100) electrodes. Our results show that glycerol oxidation is a very structure-sensitive reaction in terms of activity and, more surprisingly, in terms of selectivity. Using a combination of online HPLC and online electrochemical mass spectrometry, we show that on the Pt(111) electrode, glyceraldehyde, glyceric acid, and dihydroxyacetone are products of glycerol oxidation, while on the Pt(100) electrode, only glyceraldehyde was detected as the main product of the reaction. Density functional theory calculations show that this difference in selectivity is explained by different binding modes of dehydrogenated glycerol to the two surfaces. On Pt(111), the dehydrogenated glycerol intermediate binds to the surface through two single Pt–C bonds, yielding an enediol-like intermediate, which serves as a precursor to both glyceraldehyde and dihydroxyacetone. On Pt(100), the deh...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    90
    Citations
    NaN
    KQI
    []