language-icon Old Web
English
Sign In

Alcohol oxidation

Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either to aldehydes (R-CHO) or to carboxylic acids (R-CO2H), while the oxidation of secondary alcohols (R1R2CH-OH) normally terminates at the ketone (R1R2C=O) stage. Tertiary alcohols (R1R2R3C-OH) are resistant to oxidation. Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either to aldehydes (R-CHO) or to carboxylic acids (R-CO2H), while the oxidation of secondary alcohols (R1R2CH-OH) normally terminates at the ketone (R1R2C=O) stage. Tertiary alcohols (R1R2R3C-OH) are resistant to oxidation. The indirect oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R-CH(OH)2) by reaction with water. The oxidation of a primary alcohol at the aldehyde level is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed.

[ "Catalysis", "Alcohol", "3-chloroperoxybenzoic acid", "2-azaadamantane N-oxyl", "Oxidation of secondary alcohols to ketones", "Bis(trimethylsilyl)chromate", "Oxidation of primary alcohols to carboxylic acids" ]
Parent Topic
Child Topic
    No Parent Topic