Design of a Dynamic Priority-Based Fast Path Architecture for On-Chip Interconnects

2007 
In modern multi-core system-on-chip (SoC) architectures, the design of innovative interconnection fabrics is indispensable. The concept of the network-on-chip (NoC) architecture has been proposed recently to better suit this requirement. Especially, the router architecture has a significant effect on the overall performance and energy consumption of the chip. We propose a dynamic path management scheme that exploits network traffic information during switch arbitration. Consequently, flits transferred across frequently used paths are expedited by traversing a reduced router pipeline. This technique, based on pipeline bypassing, is simulated and evaluated in terms of network latency and average power consumption. Simulation results with real-world application traces show that the architecture improves the performance up to 30% while incurring only minimal area/power overhead.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    60
    Citations
    NaN
    KQI
    []