Competitive Interactions of Collagen and a Jararhagin-derived Disintegrin Peptide with the Integrin α2-I Domain

2008 
Integrin α2β1 is a major receptor required for activation and adhesion of platelets, through the specific recognition of collagen by the α2-I domain (α2-I), which binds fibrillar collagen via Mg2+-bridged interactions. The crystal structure of a truncated form of the α2-I domain, bound to a triple helical collagen peptide, revealed conformational changes suggestive of a mechanism where the ligand-bound I domain can initiate and propagate conformational change to the full integrin complex. Collagen binding by α2-I and fibrinogen-dependent platelet activity can be inhibited by snake venom polypeptides. Here we describe the inhibitory effect of a short cyclic peptide derived from the snake toxin metalloprotease jararhagin, with specific amino acid sequence RKKH, on the ability of α2-I to bind triple helical collagen. Isothermal titration calorimetry measurements showed that the interactions of α2-I with collagen or RKKH peptide have similar affinities, and NMR chemical shift mapping experiments with 15N-labeled α2-I, and unlabeled RKKH peptide, indicate that the peptide competes for the collagen-binding site of α2-I but does not induce a large scale conformational rearrangement of the I domain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    18
    Citations
    NaN
    KQI
    []