Comprehensive recovery method of rare metal ore

2012 
The invention discloses a comprehensive recovery method of rare metal ore. The method is characterized by comprising the following steps of: grinding the raw ore, adding sodium chloride, and uniformly mixing and pelletizing; drying the pellets and uniformly mixing with soft coal; performing heating, grinding and magnetic separation to obtain the reduced iron powder and magnetic separation tailings; adding concentrated sulfuric acid into the magnetic separation tailings for acidification; adding water for primary leaching; performing solid-liquid separation to obtain the primary leaching liquid and primary leaching slag; adding water into the primary leaching slag, leaching and performing solid-liquid separation to obtain secondary leaching liquid and secondary leaching slag; stockpiling the secondary leaching slag; mixing the primary leaching liquid and the secondary leaching liquid; concentrating; adding sodium sulfate to the concentrate; reacting and performing solid-liquid separation to obtain the rare-earth sulphate double salt and solution rich in niobium and tantalum; adding sodium carbonate solution to the rare-earth sulphate double salt; reacting to obtain rare-earth carbonate; calcining to obtain rare earth oxide; adding ammonia water to adjust the pH value of the solution rich in niobium and tantalum; stirring and performing solid-liquid separation to obtain niobium and tantalum precipitates; and calcining the precipitates to obtain the niobium and tantalum concentrate. The invention provides a comprehensive recovery method of rare earth, niobium and tantalum from the rare metal ore.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []