language-icon Old Web
English
Sign In

Sodium sulfate

Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used for the manufacture of detergents and in the kraft process of paper pulping. Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used for the manufacture of detergents and in the kraft process of paper pulping. The decahydrate of sodium sulfate is known as Glauber's salt after the Dutch/German chemist and apothecary Johann Rudolf Glauber (1604–1670), who discovered it in 1625 in Austrian spring water. He named it sal mirabilis (miraculous salt), because of its medicinal properties: the crystals were used as a general purpose laxative, until more sophisticated alternatives came about in the 1900s. In the 18th century, Glauber's salt began to be used as a raw material for the industrial production of soda ash (sodium carbonate), by reaction with potash (potassium carbonate). Demand for soda ash increased and the supply of sodium sulfate had to increase in line. Therefore, in the nineteenth century, the large scale Leblanc process, producing synthetic sodium sulfate as a key intermediate, became the principal method of soda ash production. Sodium sulfate is a typical electrostatically bonded ionic sulfate. The existence of free sulfate in solution is indicated by the easy formation of insoluble sulfates when these solutions are treated with Ba2+ or Pb2+ salts: Sodium sulfate is unreactive toward most oxidizing or reducing agents. At high temperatures, it can be converted to sodium sulfide by carbothermal reduction (high temperature heating with charcoal, etc.): This reaction was employed in the Leblanc process, a defunct industrial route to sodium carbonate. Sodium sulfate reacts with sulfuric acid to give the acid salt sodium bisulfate: Sodium sulfate displays a moderate tendency to form double salts. The only alums formed with common trivalent metals are NaAl(SO4)2 (unstable above 39 °C) and NaCr(SO4)2, in contrast to potassium sulfate and ammonium sulfate which form many stable alums. Double salts with some other alkali metal sulfates are known, including Na2SO4·3K2SO4 which occurs naturally as the mineral aphthitalite. Formation of glaserite by reaction of sodium sulfate with potassium chloride has been used as the basis of a method for producing potassium sulfate, a fertiliser. Other double salts include 3Na2SO4·CaSO4, 3Na2SO4·MgSO4 (vanthoffite) and NaF·Na2SO4. Sodium sulfate has unusual solubility characteristics in water. Its solubility in water rises more than tenfold between 0 °C to 32.384 °C, where it reaches a maximum of 49.7 g/100 mL. At this point the solubility curve changes slope, and the solubility becomes almost independent of temperature. This temperature at 32.384 °C, corresponding to the release of crystal water and melting of the hydrated salt, serves as an accurate temperature reference for thermometer calibration.

[ "Sodium", "Sodium scymnol sulfate", "Sodium Borate Decahydrate", "SODIUM SULFATE ANHYDROUS", "ALKYL ARYL SODIUM SULFONATE", "Sodium methyl sulfate" ]
Parent Topic
Child Topic
    No Parent Topic