ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy

2013 
Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado–Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    37
    Citations
    NaN
    KQI
    []