language-icon Old Web
English
Sign In

RNA-induced silencing complex

The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which incorporates one strand of a single-stranded RNA (ssRNA) fragment, such as microRNA (miRNA), or double-stranded small interfering RNA (siRNA). The single strand acts as a template for RISC to recognize complementary messenger RNA (mRNA) transcript. Once found, one of the proteins in RISC, called Argonaute, activates and cleaves the mRNA. This process is called RNA interference (RNAi) and it is found in many eukaryotes; it is a key process in gene silencing and defense against viral infections. The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which incorporates one strand of a single-stranded RNA (ssRNA) fragment, such as microRNA (miRNA), or double-stranded small interfering RNA (siRNA). The single strand acts as a template for RISC to recognize complementary messenger RNA (mRNA) transcript. Once found, one of the proteins in RISC, called Argonaute, activates and cleaves the mRNA. This process is called RNA interference (RNAi) and it is found in many eukaryotes; it is a key process in gene silencing and defense against viral infections. The biochemical identification of RISC was conducted by Gregory Hannon and his colleagues at the Cold Spring Harbor Laboratory. This was only a couple of years after the discovery of RNA interference in 1998 by Andrew Fire and Craig Mello, who shared the 2006 Nobel Prize in Physiology or Medicine. Hannon and his colleagues attempted to identify the RNAi mechanisms involved in gene silencing, by dsRNAs, in Drosophila cells. Drosophila S2 cells were transfected with a lacZ expression vector to quantify gene expression with β-galactosidase activity. Their results showed co-transfection with lacZ dsRNA significantly reduced β-galactosidase activity compared to control dsRNA. Therefore, dsRNAs control gene expression via sequence complementarity. S2 cells were then transfected with Drosophila cyclin E dsRNA. Cycline E is an essential gene for cell cycle progression into the S phase. Cyclin E dsRNA arrested the cell cycle at the G1 phase (before the S phase). Therefore, RNAi can target endogenous genes. In addition, cyclin E dsRNA only diminished cyclin E RNA — a similar result was also shown using dsRNA corresponding to cyclin A which acts in S, G2 and M phases of the cell cycle. This shows the characteristic hallmark of RNAi: the reduced levels of mRNAs correspond to the levels of dsRNA added. To test whether their observation of decreased mRNA levels was a result of mRNA being targeted directly (as suggested by data from other systems), Drosophila S2 cells were transfected with either Drosophila cyclin E dsRNAs or lacZ dsRNAs and then incubated with synthetic mRNAs for cyclin E or lacZ. Cells transfected with cyclin E dsRNAs only showed degradation in cyclin E transcripts — the lacZ transcripts were stable. Conversely, cells transfected with lacZ dsRNAs only showed degradation in lacZ transcripts and not cyclin E transcripts. Their results led Hannon and his colleagues to suggest RNAi degrades target mRNA through a 'sequence-specific nuclease activity'. They termed the nuclease enzyme RISC. The RNase III Dicer aids RISC in RNA interference by cleaving dsRNA into 21-23 nucleotide long fragments with a two-nucleotide 3' overhang. These dsRNA fragments are loaded into RISC and each strand has a different fate based on the asymmetry rule phenomenon. RISC uses the bound guide strand to target complementary 3'-untranslated regions (3'UTR) of mRNA transcripts via Watson-Crick base pairing. RISC can now regulate gene expression of the mRNA transcript in a number of ways.

[ "RNA silencing", "Small interfering RNA", "RNA-dependent RNA polymerase", "Sense (molecular biology)", "Non-coding RNA" ]
Parent Topic
Child Topic
    No Parent Topic