Zinc Inhibition of Bacterial Cytochrome bc1 Reveals the Role of Cytochrome b E295 in Proton Release at the Qo Site

2011 
The cytochrome (cyt) bc1 complex (cyt bc1) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc1 is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn2+-induced inhibition of Rhodobacter capsulatus cyt bc1 using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn2+ binding mechanism and its inhibitory effect on cyt bc1 function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn2+ on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn2+ binding affinity. The kinetic s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    26
    Citations
    NaN
    KQI
    []