Integrating Global Navigation Satellite System and Road-Marking Detection for Vehicle Localization in Urban Traffic

2016 
This paper presents an accurate vehicle self-localization system for autonomous driving. The developed system integrates multiple onboard sensors, a Global Navigation Satellite System (GNSS) receiver, an inertial sensor, a speedometer, and an onboard monocular camera to achieve lane-level performance in an urban environment. GNSS positioning suffers from the effects of multipath and non-line-of-sight (NLOS) propagation in urban canyons. To reduce the effects of multipath and NLOS propagation, this paper proposes using an innovative differential GNSS positioning technique with the aid of a three-dimensional building map. The road marking on the road surface provides visual information for driving. Recognition of road markings could be a way for localization when the position of the road marking is available. This research used the recognition of lane markings and stop-line markings to reduce further the positioning error. The multiple-lane detection was developed for improving the positioning error along t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []