language-icon Old Web
English
Sign In

Road surface

A road surface or pavement is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, cobblestone and granite setts were extensively used, but these surfaces have mostly been replaced by asphalt or concrete laid on a compacted base course. Road surfaces are frequently marked to guide traffic. Today, permeable paving methods are beginning to be used for low-impact roadways and walkways. Pavements are crucial to countries such as US and Canada, which heavily depend on road transportation. Therefore, research projects such as Long-Term Pavement Performance are launched to optimize the life-cycle of different road surfaces. Asphalt (specifically, asphalt concrete), sometimes called flexible pavement due to the nature in which it distributes loads, has been widely used since the 1920s. The viscous nature of the bitumen binder allows asphalt concrete to sustain significant plastic deformation, although fatigue from repeated loading over time is the most common failure mechanism. Most asphalt surfaces are laid on a gravel base, which is generally at least as thick as the asphalt layer, although some 'full depth' asphalt surfaces are laid directly on the native subgrade. In areas with very soft or expansive subgrades such as clay or peat, thick gravel bases or stabilization of the subgrade with Portland cement or lime may be required. Polypropylene and polyester geosynthetics have also been used for this purpose and in some northern countries, a layer of polystyrene boards have been used to delay and minimize frost penetration into the subgrade. Depending on the temperature at which it is applied, asphalt is categorized as hot mix, warm mix, or cold mix. Hot mix asphalt is applied at temperatures over 300 °F (150 °C) with a free floating screed. Warm mix asphalt is applied at temperatures of 200–250 °F (95–120 °C), resulting in reduced energy usage and emissions of volatile organic compounds. Cold mix asphalt is often used on lower-volume rural roads, where hot mix asphalt would cool too much on the long trip from the asphalt plant to the construction site. An asphalt concrete surface will generally be constructed for high-volume primary highways having an average annual daily traffic load greater than 1200 vehicles per day. Advantages of asphalt roadways include relatively low noise, relatively low cost compared with other paving methods, and perceived ease of repair. Disadvantages include less durability than other paving methods, less tensile strength than concrete, the tendency to become slick and soft in hot weather and a certain amount of hydrocarbon pollution to soil and groundwater or waterways. In the mid-1960s, rubberized asphalt was used for the first time, mixing crumb rubber from used tires with asphalt. While a potential use for tires that would otherwise fill landfills and present a fire hazard, rubberized asphalt has shown greater incidence of wear in freeze-thaw cycles in temperate zones due to non-homogeneous expansion and contraction with non-rubber components. The application of rubberized asphalt is more temperature-sensitive, and in many locations can only be applied at certain times of the year. Study results of the long-term acoustic benefits of rubberized asphalt are inconclusive. Initial application of rubberized asphalt may provide 3–5 decibels (dB) reduction in tire-pavement source noise emissions; however, this translates to only 1–3 decibels (dB) in total traffic noise level reduction (due to the other components of traffic noise). Compared to traditional passive attenuating measures (e.g., noise walls and earth berms), rubberized asphalt provides shorter-lasting and lesser acoustic benefits at typically much greater expense. Concrete surfaces (specifically, Portland cement concrete) are created using a concrete mix of Portland cement, coarse aggregate, sand, and water. In virtually all modern mixes there will also be various admixtures added to increase workability, reduce the required amount of water, mitigate harmful chemical reactions and for other beneficial purposes. In many cases there will also be Portland cement substitutes added, such as fly ash. This can reduce the cost of the concrete and improve its physical properties. The material is applied in a freshly mixed slurry, and worked mechanically to compact the interior and force some of the cement slurry to the surface to produce a smoother, denser surface free from honeycombing. The water allows the mix to combine molecularly in a chemical reaction called hydration.

[ "Civil engineering", "Composite material", "Utility model", "road surface roughness", "Road slipperiness", "Road texture", "MegaTexture", "road surface temperature" ]
Parent Topic
Child Topic
    No Parent Topic