Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan

2019 
Pakistan summer monsoon rainfall consists of a large portion of the local annual total rainfall, and in the recent monsoon seasons, prolonged periods of anomalous rainfall and excessive flooding have appeared in Pakistan. A full understanding of the monsoon rainfall variability is important for the sustainable development of the country. Based on multiple data analyses and the weather research and forecasting model, the potential impact of Tibetan Plateau (TP) heating on the interannual variability of Pakistan monsoon rainfall is investigated. It is observed that a significant negative relationship exists between the thermal forcing over the southeastern TP and Pakistan monsoon rainfall in July–August. Both the data analyses and model sensitivity experiments identify that the TP heating drives a Rossby wave response in the upper atmosphere characterized with an anticyclonic anomaly over the southern TP but a cyclonic anomaly to the north. This dipole pattern of anomalous circulation induces an evident upper-level convergence over Pakistan, corresponding with remarkable vertical sinking motion. Meanwhile, in the lower troposphere, the TP heating causes anomalous westerly wind along the Himalayas over the northern India continent. Such westerly anomaly further induces less water vapor transport into Pakistan from the Bay of Bengal. Therefore, both the dynamic and thermodynamic processes regulated by positive TP heating are not beneficial for the occurrence of monsoon rainfall in Pakistan. This study proposes a new potential mechanism in which TP heating acts as a driver of Pakistan monsoon rainfall variability on interannual time scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    16
    Citations
    NaN
    KQI
    []