High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses

2012 
The high spatial frequency periodic structures induced on metal surface by femtosecond laser pulses was investigated experimentally and numerically. It is suggested that the redistribution of the electric field on metal surface caused by the initially formed low spatial frequency periodic structures plays a crucial role in the creation of high spatial frequency periodic structures. The field intensity which is initially localized in the grooves becomes concentrated on the ridges in between the grooves when the depth of the grooves exceeds a critical value, leading to the ablation of the ridges in between the grooves and the formation of high spatial frequency periodic structures. The proposed formation process is supported by both the numerical simulations based on the finite-difference time-domain technique and the experimental results obtained on some metals such as stainless steel and nickel.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    74
    Citations
    NaN
    KQI
    []