Proton pump inhibitors selectively suppress MLL rearranged leukemia cells via disrupting MLL1-WDR5 protein-protein interaction.

2020 
Abstract Genetic rearrangements of the mixed lineage leukemia (MLL) leading to oncogenic MLL-fusion proteins (MLL-FPs). MLL-FPs occur in about 10% of acute leukemias and are associated with dismal prognosis and treatment outcomes which emphasized the need for new therapeutic strategies. In present study, by a cell-based screening in-house compound collection, we disclosed that Rabeprazole specially inhibited the proliferation of leukemia cells harboring MLL-FPs with little toxicity to non-MLL cells. Mechanism study showed Rabeprazole down-regulated the transcription of MLL-FPs related Hox and Meis1 genes and effectively inhibited MLL1 H3K4 methyltransferase (HMT) activity in MV4-11 cells bearing MLL-AF4 fusion protein. Displacement of MLL1 probe from WDR5 protein suggested that Rabeprazole may inhibit MLL1 HMT activity through disturbing MLL1-WDR5 protein-protein interaction. Moreover, other proton pump inhibitors (PPIs) also indicated the inhibition activity of MLL1-WDR5. Preliminary SARs showed the structural characteristics of PPIs were also essential for the activities of MLL1-WDR5 inhibition. Our results indicated the drug reposition of PPIs for MLL-rearranged leukemias and provided new insight for further optimization of targeting MLL1 methyltransferase activity, the MLL1-WDR5 interaction or WDR5.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []