NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome

2005 
Myelodysplastic syndrome (MDS) is a preneoplastic condition that frequently develops into overt acute myeloid leukemia (AML). The P39 MDS/AML cell line manifested constitutive NF-κB activation. In this cell line, NF-κB inhibition by small interfering RNAs specific for p65 or chemical inhibitors including bortezomib resulted in the down-regulation of apoptosis-inhibitory NF-κB target genes and subsequent cell death accompanied by loss of mitochondrial transmembrane potential as well as by the mitochondrial release of the caspase activator cytochrome c and the caspase-independent death effectors endonuclease G and apoptosis-inducing factor (AIF). Bone marrow cells from high-risk MDS patients also exhibited constitutive NF-κB activation similar to bone marrow samples from MDS/AML patients. Purified hematopoietic stem cells (CD34+) and immature myeloid cells (CD33+) from high-risk MDS patients demonstrated the nuclear translocation of the p65 NF-κB subunit. The frequency of cells with nuclear p65 correlated with blast counts, apoptosis suppression, and disease progression. NF-κB activation was confined to those cells that carried MDS-associated cytogenetic alterations. Since NF-κB inhibition induced rapid apoptosis of bone marrow cells from high-risk MDS patients, we postulate that NF-κB activation is responsible for the progressive suppression of apoptosis affecting differentiating MDS cells and thus contributes to malignant transformation. NF-κB inhibition may constitute a novel therapeutic strategy if apoptosis induction of MDS stem cells is the goal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    131
    Citations
    NaN
    KQI
    []