Thermodynamic properties of (TeO 2 ) n (MoO 3 ) 1– n glasses

2017 
The thermal behavior of (TeO2) n (MoO3)1–n (n = 0.75, 0.85, 0.90) tellurite glasses has been studied by differential scanning calorimetry in the range from T = 300 to T = 850 K and heat capacity has been measured in the temperature range. The thermodynamic characteristics of the devitrification process and glassy state have been determined. The experimental data obtained have been used to evaluate the standard thermodynamic functions of the system in glassy and supercooled liquid states: heat capacity C p °(T), enthalpy H°(T)–H°(320), entropy S°(T)–S°(320), and Gibbs function G°(T)–G°(320) in the temperature range 320–630 K. The composition dependences of the glass transition temperature and thermodynamic functions for the glasses have been obtained. The thermal and thermodynamic properties of the tellurite glasses have been compared to those of previously studied (TeO2) n (WO3)1–n and (TeO2) n (ZnO)1–n glasses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []