language-icon Old Web
English
Sign In

Gibbs free energy

In thermodynamics, the Gibbs free energy (IUPAC recommended name: Gibbs energy or Gibbs function; also known as free enthalpy to distinguish it from Helmholtz free energy) is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure (isothermal, isobaric). The Gibbs free energy (ΔGº = ΔHº – TΔSº; J in SI units) is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system (one that can exchange heat and work with its surroundings, but not matter); this maximum can be attained only in a completely reversible process. When a system transforms reversibly from an initial state to a final state, the decrease in Gibbs free energy equals the work done by the system to its surroundings, minus the work of the pressure forces.the greatest amount of mechanical work which can be obtained from a given quantity of a certain substance in a given initial state, without increasing its total volume or allowing heat to pass to or from external bodies, except such as at the close of the processes are left in their initial condition.If we wish to express in a single equation the necessary and sufficient condition of thermodynamic equilibrium for a substance when surrounded by a medium of constant pressure p and temperature T, this equation may be written:(State)(kJ/mol)(kcal/mol) In thermodynamics, the Gibbs free energy (IUPAC recommended name: Gibbs energy or Gibbs function; also known as free enthalpy to distinguish it from Helmholtz free energy) is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure (isothermal, isobaric). The Gibbs free energy (ΔGº = ΔHº – TΔSº; J in SI units) is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system (one that can exchange heat and work with its surroundings, but not matter); this maximum can be attained only in a completely reversible process. When a system transforms reversibly from an initial state to a final state, the decrease in Gibbs free energy equals the work done by the system to its surroundings, minus the work of the pressure forces. The Gibbs energy (also referred to as G) is also the thermodynamic potential that is minimized when a system reaches chemical equilibrium at constant pressure and temperature. Its derivative with respect to the reaction coordinate of the system vanishes at the equilibrium point. As such, a reduction in G is a necessary condition for the spontaneity of processes at constant pressure and temperature. The Gibbs free energy, originally called available energy, was developed in the 1870s by the American scientist Josiah Willard Gibbs. In 1873, Gibbs described this 'available energy' as The initial state of the body, according to Gibbs, is supposed to be such that 'the body can be made to pass from it to states of dissipated energy by reversible processes'. In his 1876 magnum opus On the Equilibrium of Heterogeneous Substances, a graphical analysis of multi-phase chemical systems, he engaged his thoughts on chemical free energy in full. According to the second law of thermodynamics, for systems reacting at STP (or any other fixed temperature and pressure), there is a general natural tendency to achieve a minimum of the Gibbs free energy. A quantitative measure of the favorability of a given reaction at constant temperature and pressure is the change ΔG (sometimes written 'delta G' or 'dG') in Gibbs free energy that is (or would be) caused by the reaction. As a necessary condition for the reaction to occur at constant temperature and pressure, ΔG must be smaller than the non-PV (e.g. electrical) work, which is often equal to zero (hence ΔG must be negative). ΔG equals the maximum amount of non-PV work that can be performed as a result of the chemical reaction for the case of reversible process. If the analysis indicated a positive ΔG for the reaction, then energy — in the form of electrical or other non-PV work — would have to be added to the reacting system for ΔG to be smaller than the non-PV work and make it possible for the reaction to occur.:298–299 We can think of ∆G as the amount of 'free' or 'useful' energy available to do work. The equation can be also seen from the perspective of the system taken together with its surroundings (the rest of the universe). First, assume that the given reaction at constant temperature and pressure is the only one that is occurring. Then the entropy released or absorbed by the system equals the entropy that the environment must absorb or release, respectively. The reaction will only be allowed if the total entropy change of the universe is zero or positive. This is reflected in a negative ΔG, and the reaction is called exergonic. If we couple reactions, then an otherwise endergonic chemical reaction (one with positive ΔG) can be made to happen. The input of heat into an inherently endergonic reaction, such as the elimination of cyclohexanol to cyclohexene, can be seen as coupling an unfavourable reaction (elimination) to a favourable one (burning of coal or other provision of heat) such that the total entropy change of the universe is greater than or equal to zero, making the total Gibbs free energy difference of the coupled reactions negative. In traditional use, the term 'free' was included in 'Gibbs free energy' to mean 'available in the form of useful work'. The characterization becomes more precise if we add the qualification that it is the energy available for non-volume work. (An analogous, but slightly different, meaning of 'free' applies in conjunction with the Helmholtz free energy, for systems at constant temperature). However, an increasing number of books and journal articles do not include the attachment 'free', referring to G as simply 'Gibbs energy'. This is the result of a 1988 IUPAC meeting to set unified terminologies for the international scientific community, in which the adjective 'free' was supposedly banished. This standard, however, has not yet been universally adopted.

[ "Quantum mechanics", "Thermodynamics", "Physical chemistry", "Inorganic chemistry", "Standard Gibbs free energy of formation", "Spontaneous process", "Thermodynamic free energy", "Standard molar entropy", "Standard gibbs free energy change" ]
Parent Topic
Child Topic
    No Parent Topic